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Abstract. This paper describes the problem of modelling toxicity of environ-
mental pollutants using molecular descriptors from a systems theoretical view-
point. It is shown that current toxicity modelling problems systematically incor-
porate very high levels of noise a priori. By means of a set of individual and 
combined models self-organised by KnowledgeMiner from a high-dimensional 
molecular descriptor data set calculated within the DEMETRA project we sug-
gest a way how results interpretation and final decision making can effectively 
take into account the huge uncertainty of toxicity models. 

1   Introduction 

The global production of chemicals has increased from 1 million tonnes in 1930 to 
400 million tonnes today. There are about 100.000 different substances registered in 
the EU market of which 10.000 are marketed in volumes of more than 10 tonnes, and 
a further 20.000 are marketed at 1-10 tonnes. 

Besides the economical importance of the chemical industry as Europe’s third larg-
est manufacturing industry, it is also true that certain chemicals have caused serious 
damage to human health resulting in suffering and premature death and to the envi-
ronment. The incidence of some diseases, e.g. testicular cancer in young men and 
allergies, has increased significantly over the last decades. While the underlying rea-
sons for this have not yet been identified, there is justified concern that certain chemi-
cals play a causative role for allergies. 

The present system for general industrial chemicals distinguishes between "exist-
ing substances" i.e. all chemicals declared to be on the market in September 1981, and 
"new substances" i.e. those placed on the market since that date. There are some 2.700 
new substances. Testing and assessing their risks to human health and the environ-
ment according to Directive 67/548 are required before marketing in volumes above 
10 kg. In contrast, existing substances amount to more than 99% of the total volume 
of all substances on the market, and are not subject to the same testing requirements. 
In result, there is a general lack of knowledge about the properties and the uses of 
existing substances. The risk assessment process is slow and resource-intensive and 
does not allow the system to work efficiently and effectively [1]. 
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To address these problems and to achieve the overriding goal of sustainable devel-
opment one political objective formulated by the European Commision in its White 
Paper [1] is the promotion of non-animal testing, which includes: 

• Maximising use of non-animal test methods; 
• Encouraging development of new non-animal test methods; 
• Minimising test programmes. 
A current way in that direction is building mathematical, Quantitative Structure-
Activity Relationship (QSAR) models based on existing test data that aim on describ-
ing and predicting the short-term, acute impact of a chemical compound (pollutant) on 
the health of a population of a certain biological species. This impact can either be 
direct by injection or feeding or indirect by introducing a specific concentration of a 
chemical into the environment (air, water, soil). Representative for expressing the 
chemicals’s impact on the population’s health the lethal dose LD50 or the lethal con-
centration LC50 (toxicity) is measured correspondingly. LC50, for example, specifies 
the experienced concentration of a chemical compound where 50% of the population 
died within a given time after intoduction of the chemical to the system. 

In this work the Group Method of Data Handling (GMDH) [2] is used as a very ef-
fective and valuable modelling technology for building mathematical models and 
predictions of the lethal concentration. 

2   The Problem of Modelling Toxicity 

2.1   Systems Analysis 

Generally, real-world systems are time-variant nonlinear dynamic systems [3]. There-
fore, it should be useful to allow the modelling algorithm to generate systems of 
nonlinear difference equations. For toxicity modelling this system can be considered 
time-invariant due to the intentionally short-term effect of the pollutant.  

A possible dynamic model of the ecotoxicological system is shown in figure 1, 
 

u(t)

x(t)
ecological
  system

biological
  system

y(t)

cv(t) z1(t) z2(t)

 
Fig. 1. Dynamic model of an aquatic ecotoxicological system 

where 
x(t) – state vector of the ecological system at time t,     
u(t) – vector of external variables at time t,      
cv(t) – concentration of the pollutant v at time t,     
z1(t), z2(t) – external disturbances to the system at time t,    
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y(t) – output vector of dimension p describing the health of the population at time t, 
          y(t)=[y1(t), y2(t),.., ym(t), .., yp(t)]

T      

ym(t) – the population’s cumulated mortality rate at time t (see also fig. 3). 
This dynamic model is described by the following system of equations: 
     x(t+1)  = G(x(t), u(t), cv(t), z1(t), z2(t)) 
     w(t)     = H1(x(t), u(t), cv(t), z1(t)) 
     y(t)      = H2(w(t), z2(t)) = H*(x(t), u(t), cv(t), z1(t), z2(t)) 

(1) 

with cv (t) =
c0

0
⎧ 
⎨ 
⎩ 

t = t 0

else
, and c0 as the concentration of the test compound v in mg/l. 

During the animal tests, however, the external variables u(t) and the state variables 
x(t) of the system are not observed, usually, or not observable and therefore they are 
considered constant so that for modelling the ecotoxicological system transforms into 
a nonlinear static system (fig. 2): 

ecotoxicological
       system

zG

cv y

 
Fig. 2. Reduced model of the static system with noise zG = h1(z1, z2) 

Additional noise z3 is introduced to the static system by the missing information of 
external and state variables that now transforms to noise. Also the testing procedure 
itself adds some noise z4 so that the static system’s noise finally is zS = h2(zG, z3, z4), 
and the modelling task of the ecotoxicological system reduces to approximating the 
dependence of the experienced mortality rate y from the pollutant’s concentration cv: 

y = f1(cv, zS). (2) 

If an animal experiment is repeated several times using the same concentration ci,v 
of a chemical test compound v multiple experienced mortality rate values yci,v

are 

available (fig. 3). This means, for ci,v = const., the interval of the observed mortality 
rate values yci,v

can be seen as a direct expression of the static system’s noise zS. For 

the reverse case of measuring the concentration cv for a constant mortality rate yj = 
const. the problem transforms to  

cv = f2(yj, zS) (fig. 3). (3) 

For yj = 50%, cv is the experienced lethal concentration LC50 for a pollutant v, which 
is actually used as the output variable in toxicity QSAR modelling. With a commonly 

observed rate 
cv,max

cv,min
≈ 4  for a single compound v this output variable can be seen as 

highly noisy. 
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Fig. 3. Variation of LC50 resulting from a number of comparable tests 

The initial task of modelling the observed mortatlity rate y from a pollutant’s concen-
tration cv now shifts to finding a description of the dependence of a pollutant’s lethal 
concentration LC50 for a specific species from the pollutant’s molecular structure sv 

(fig. 4): 

LC50 = f3(sv, zM), with  zM = h3(zS) (4) 

mapping

zM

sv LC 50

 
Fig. 4. The toxicity modelling problem as applied in practice. Note that the input variable cv 
(LC50) of the initial ecotoxicological system (fig. 1 and 2) has shifted to now being the objec-
tive of modelling 

This finally means not to model the object itself – the ecotoxicological system – but 
one of its inputs – the external disturbance cv. The initial system’s input-output rela-
tion is mapped by just a single pair of observations (LC50, y) so that it is described by 
a linear relationship a priori. 

A next problem is how to express the structure sv of the chemical v. Commonly, it 
is a complex chemical object, but for building a mathematical model that describes 
the dependence of the toxicity from the chemical structure a formal transformation 
into a set of numerical properties - descriptors - is required. This transformation is 
based on chemical and/or biological domain knowledge implemented in some soft-
ware (fig. 5): 

dv = f4(sv, zT) (5) 
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      software
       system

zT

sv dv

 
Fig. 5. Model of the chemical structure to molecular descriptor transformation 

In the chemical domain, for example, input of the software system can be a 2-
dimensional or a 3-dimensional drawing of the chemical structure, but also SMILES 
coded strings or other expressions may be possible. Output of the system is a certain 
set of molecular descriptors depending on the software used and the theoretical model 
implemented. Applying different software provides different sets of descriptors that 
may intersect to some extent but may not necessarily have identical values though. 
Also, the interpretational power of descriptors can be low or difficult when they loose 
chemical meaning. 

The process of descriptor calculation also adds noise. Not only software bugs or 
manual failures may introduce noise, more important for introduction of uncertainty 
should be the interpretational clearance of domain knowledge for properly formalis-
ing an appropriate set of molecular descriptors, different starting condition assump-
tions (conformation) for descriptor calculation, or several different optimisation op-
tions. Not always is their chemical meaning very strong or theoretically accounted. 

The final, simplified nonlinear static model used in QSAR modelling to describe 
acute toxicity is (fig. 6): 

      software
       system

zT

sv dv
mapping

zM

LC 50

 
Fig. 6. Simplified model for describing acute toxicity 

with  
LC50 = f5(f4(sv, zT), zM) = f(sv, zT, zM), (6) 

LC50 – experienced lethal concentration for a certain species and chemical compound, 
sv – the structure of the tested chemical compound in the chemical domain, 
zT – noise of the chemical structure to molecular descriptor transformation process, 
zM – noise transformed from the ecotoxicological test system, 
dv - vector of numerical molecular descriptors of the test compound 

The external disturbance zT which adds noise to descriptor input space used for 
modelling can be reduced by fixing bugs and manual failures and by finding a most 
consistent chemical structure to descriptor transformation – although it is not clear a 
priori which transformation or optimisation will add and which will reduce noise. The 
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disturbance zM, which finally results from the experimental tests, in contrast, adds 
noise to the output LC50 and is a given fact that cannot be changed afterwards. 

2.2   Modelling Methods 

Apparently, toxicity QSAR modelling implies dealing with very noisy data. Data sets 
are generally not perfect reflections of the world. The measuring process necessarily 
captures uncertainty, distortion and noise. Noise is not errors that can infect data but 
part of the world. Therefore, a modelling tool, but also results and decisions, must 
deal with the noise in the data. Information about the noise dispersion can be useful 
for choosing adequate modelling technologies by referencing the ideas of Stafford 
Beer’s adequacy law [4]: The “black boxes” of the objects have to be compensated by 
corresponding “black boxes” in the information or control algorithm. Based on this 
idea, the following general classification of modelling algorithms is suggested in [2]: 
For a small level of noise dispersion, all regression-based methods using some inter-
nal criterion can be applied:  

• GMDH with internal selection criteria, 
• Statistical methods, or  
• Neural Networks. 

For considerably noisy data – which always includes small data samples – GMDH 
or other algorithms based on external criteria are preferable. For a high level of noise 
dispersion, i.e., processes that show a highly random or chaotic behavior, finally, 
nonparametric algorithms of clustering, Analog Complexing, or fuzzy modelling 
should be applied to satisfy the adequateness law. This implies also that with increas-
ing noise in the data the model results and their descriptive language become fuzzier 
and more qualitative.  

There is a broad spectrum of possible algorithms to use, because it is not possible 
to define the characteristics of the controlled object in advance, exactly. Therefore, it 
is helpful to try several modelling algorithms, first, and then decide which algorithms 
suit the given type of object best or most appropriately combine the results of differ-
ent modelling runs in a hybrid model. In QSAR modelling, for several reasons, pre-
dominantely algorithms have been used for modelling linear static systems (linear 
regression, PLS, especially), which is an additional significant simplification of the 
highly disturbed ecotoxicological system model. One reason surely is connected with 
problems in creating and validating reliable descriptive and predictive nonlinear mod-
els. Even in cases where it was possible to create to some meaning good predictive 
nonlinear models (Neural Networks) – not looking at the special validation require-
ments of nonlinear models in general – they commonly have no or only low descrip-
tive power which, however, turns out being an important feature for applicability and 
acceptability in real-world scenarios. Users usually don’t want to rely decisions on 
kind of “black boxes”. Due to the large noise level in toxicity modelling descriptive 
power might also be part of the model evaluation procedure, because models that can 
be interpreted from a theoretical viewpoint can be judged using domain knowledge. 
Another reason for preferring linear models in toxicity QSAR modelling is the high-
dimensional descriptor space and/or the comparingly low number of tested com-
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pounds, which always implies state space dimension reduction. Linear approaches are 
widely used here in preprocessing to obtain a small set of “best” descriptors, where 
“best” then relates to building linear models. 

2.3   Modelling Technologies Used 

2.3.1   High-Dimensional Modelling 
A new approach to high-dimensional state space modelling we have been developing 
and using is based on multileveled self-organisation. The basic idea here is dividing 
high-dimensional modelling problems into smaller, more manageable problems by 
creating a new self-organising network level composed of active neurons, where an 
active neuron is represented by an inductive learning algorithm (lower levels of self-
organisiation) applied to disjunct data sets. The objective of this approach is based on 
the principle of regularisation of ill-posed tasks, especially the requirement of defin-
ing the actual task of modelling a priori to be able to select a set of best models. In the 
context of a knowledge discovery from databases, however, this also implies using 
this principle in every stage of the knowledge extraction process – data preselection, 
preprocessing including dimension reduction, modelling (data mining), and model 
evaluation – consistently. The proposed approach of multileveled self-organisation 
integrates preprocessing, modelling, and model evaluation into a single, automatically 
running process and it therefore allows for directly building reliable models from 
high-dimensional data sets (up to 30.000 variables) objectively. The external informa-
tion necessary to run the new level of self-organisation is provided by the correspond-
ing algorithm’s noise sensitivity characteristic as explained in [5, 6]. 

2.3.2   Inductive Learning Algorithm 
The inductive learning algorithm we used in this work in the network’s active neurons 
is the Group Method of Data Handling (GMDH) as described in more detail in [2]. 
The theory of GMDH Neural Networks was first developed by A.G. Ivakhnenko [7, 
8] in 1968 based on Statistical Learning Network theory and on the principle of in-
duction, where induction consists of  

• The cybernetic principle of self-organization as an adaptive creation of a network 
without subjective points given; 

• The principle of external complement enabling an objective selection of a model of 
optimal complexity and 

• The principle of regularization of ill-posed tasks.  
This different foundation compared to traditional Backpropagation Neural Networks 
allows for autonomous and systematical creation of optimal complex models by em-
ploying both parameter and structure identification. An optimal complex model is a 
model that optimally balances model quality on a given learning data set ("closeness 
of fit") and its generalisation power on new, not previously seen data with respect to 
the data's noise level and the task of modelling (prediction, classification, modelling, 
etc.). It thus solves the basic problem of experimental systems analysis of systemati-
cally avoiding "overfitted" models based on the data's information only. This makes 
GMDH a most automated, fast and very efficient supplement and alternative to other 
data mining methods. Also, in result of modelling an analytical model in form of 
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algebraic formulas, difference equations, or systems of equations is available on the 
fly for interpretation and for gaining insight into the system. In our work the GMDH 
implementation of the KnowledgeMiner software was used, exclusively [9]. 

2.3.3   Model Combining 
Another focus is on model combining. There are several reasons to combine models 
or their results [2]: 

1. All kinds of parametric, nonparametric, algebraic, binary/fuzzy logic models are 
only simplified reflections of reality. There are always several models with a suf-
ficient same degree of adequacy for a given data sample. However, every model 
is a specific abstraction, a one-sided reflection of some important features of real-
ity only. A synthesis of alternative model results gives a more thorough reflec-
tion. 

2. Although models are self-organised, there is still some freedom of choice in sev-
eral areas due to the regularisation requirement of ill-posed tasks. This freedom 
of choice concerns, for example, the type of model (linear/nonlinear) and the 
choice of some modelling settings (threshold values, normalisation etc.). To re-
duce this unavoidable subjectivity, it can be helpful to generate several alterna-
tive models and then, in a third level of self-organisation, improving the model 
outputs by synthesising (combining) all alternative models in a new network.  

3. In many fields, such as toxicology, there are only a small number of observations, 
which is the reason for uncertain results. To improve model results the artificial 
generation of more training cases by means of jittering, randomisation, for exam-
ple, is a powerful way here.  

4. All methods of automatic model selection lead to a single "best" model while the 
accuracy of model result depends on the variance of the data. A common way for 
variance reduction is aggregation of similar model results by means of resam-
pling and other methods (bagging, boosting) following the idea: Generate many 
versions of the same predictor/classifier and combine them. 

5. If modelling aims at prediction, it is helpful to use alternative models to estimate 
alternative forecasts. These forecasts can be combined using several methods to 
yield a composite forecast of a smaller error variance than any of the components 
have individually. The desire to get a composite forecast is motivated by the 
pragmatic reason of improving decision-making rather than by the scientific one 
of seeking better explanatory models. Composite forecasts can provide more in-
formative inputs for a decision analysis, and therefore, they make sense within 
decision theory, although they are often unacceptable as scientific models in their 
own right, because they frequently represent an agglomeration of often conflict 
theories. 

3   Results on Modelling Toxicity of Pesticide Residues 

3.1   The Data Set 

We used a data set calculated within the DEMETRA project [10]. It contains 281 
chemical compounds – pesticides - and given corresponding experienced lethal con-
centrations LC50 for trout. 1061 2D molecular descriptors were calculated by different 
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commercial or publicly available software. This descriptors set is highly redundant so 
that by means of clustering a non-redundant nucleus of 647 potential 2D descriptors 
showing a diversity of at least 2% was obtained. 46 chemical compounds were hold 
out for out-of-sample testing (NC) of the generated models so that 235 pesticides were 
used for modelling (NA,B). 

3.2   Individual Models 

A set of 13 different linear and non-linear QSAR models M1 to M13 was self-
organised directly from this data set by the KnowledgeMiner data mining software 
[9]. The necessary workflow of accessing data from the database, preprocessing 
(missing values detection, data transformation), and modelling (data mining) was 
automated by applying AppleScript integrating various software tools running under 
Mac OS X in that way (MS Excel, MS Word, TextEdit, Valentina DB, AppleWorks, 
KnowledgeMiner).  

For each model we calculated three different model performance measures: 
Descriptive Power (DP) as described in [5], the Coefficient of Determination (R2), 
and the Mean Absolute Percentage Error (MAPE) as follows: 

R2 =1− δ2, δ2 =
(yi − ˆ y i )

2

i∈ N

∑
(yi − y )2

i ∈N

∑ ≤ 1,
  

(7) 

MAPE =
yi − ˆ y i

i ∈N

∑
yi

i∈ N

∑ ×100%,
  

(8) 

where yi , ˆ y i , and y  are the true, estimated, and mean values of the output variable, 

respectively, and δ 2  is the Approximation Error Variance criterion [2]. 
The corresponding results are listed in table 1. 

Table 1. Performance parameters for 13 individual models self-organised by KnowledgeMiner 

 Calculated on NA,B Calculated on NC Calculated on NA,B,C 

MODEL R2 DP 
[%] 

MAPE 
[%] 

R2 MAPE 
[%] 

R2 MAPE 
[%] 

M1 (linear) 0,69 43 28 0,54 34 0,67 28 
M2 (linear) 0,71 44 28 0,42 37 0,66 29 

M3 (nonlinear) 0,71 40 26 0,49 34 0,68 28 
M4 (nonlinear) 0,74 43 25 0,41 37 0,63 28 
M5 (nonlinear) 0,68 40 n.a. 0,31 47 0,62 31 

M6 (linear) 0,71 45 26 0,36 40 0,64 30 
M7 (linear) 0,71 45 26 0,33 42 0,63 31 

M8 (nonlinear) 0,76 47 23 0,30 39 0,66 28 
M9 (nonlinear) 0,75 46 24 0,21 43 0,64 29 
M10 (linear) 0,70 45 27 0,58 31 0,68 28 
M11 (linear) 0,69 44 28 0,54 33 0,66 29 

M12 (nonlinear) 0,72 44 26 0,49 33 0,68 28 
M13 (nonlinear) 0,76 48 25 0,42 37 0,69 28 
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3.3   The Combined Model 

Finally, a combined model Mcomb out of the 13 individual models was generated like-
wise. The combined model is built on the predicted toxicity values of the individual 
models M1 to M13 as input information. To introduce new independent information for 
this second model optimization level, all chemical compounds of the initial data set 
including those hold-out for testing were used for modelling so that all 281 com-
pounds built the learning data set here (NA,B). This is possible and reasonable, because 
the modelling task is set to work under conditions for which the generalization power 
of the external cross-validation selection criterion of the GMDH algorithm [2] works 
properly according to the algorithms’s noise sensitivity characteristic [5, 6]. Table 2 
shows the performance improvements of the combined model. 

Table 2. Performance parameters for the combined model 

 Calculated on NA,B 
MODEL R2 MAPE [%] MAPE [%] 

Mcomb (linear) 0,76 50 25 

 

The self-organised model equation for Mcomb, y = f1(M5, M10, M11, M12, M13), is: 

Lg(LC50 [mmol/l]) = 0.131 – 0.243 M11 + 0.242 M5 + 0.384 M10  
+ 0.301 M12 + 0.364 M13 

(9) 

and it is finally composed of 53 different descriptors. 

3.4   Model Uncertainty and Prediction Interval 

As pointed out in section 2, toxicity data are highly noisy and therefore require ade-
quate modelling and results interpretation methods. Additionally, all methods of 
automatic model selection lead to a single “best” model. On this base are made con-
clusions and decisions as if the model was the true model. However, this ignores the 
major component of uncertainty, namely uncertainty about the model itself. In toxic-
ity modelling it is not possible that a single crisp prediction value can cover and re-
flect the uncertainty given by the initial object’s data. If models can be obtained in a 
comparingly short time it is useful to create several alternative reliable models on 
different data subsets or using different modelling methods and then to span a predic-
tion interval from the models’ various predictions for describing the object’s uncer-
tainty more appropriately. In this way a most likely, a most pessimistic (or most save), 
and a most optimistic (or least save) prediction is obtained, naturally, based on the 
already given models only, i.e., no additional (statistical) model has to be introduced 
for confidence interval estimation, for example, which would had to make some new 
assumptions about the predicted data, and therefore, would include the confidence 
about that assumptions, which, however, is not known a priori. 
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A prediction interval has two implications:  
1. The decision maker is provided a set of predicted values that are possible and 

likely representations of a virtual experimental animal test including the uncer-
tainty once observed in corresponding past real-world experiments. The decision 
maker can base its decision on any value of this interval according to importance, 
reliability, safety, impact or effect or other properties of the actual decision. This 
keeps the principle of freedom of choice for the decision process. 

2. Depending on which value used, a prediction interval also results in different 
model quality values starting from the highest accuracy for most likely predic-
tions. 

Figure 7 displays the prediction intervals for test set compounds (NC) from the 
models contained in the combined model Mcomb reported in 3.3. 

 
Fig. 7. Prediction interval for the test set from the models contained in the combined model 

In a real-world application scenario evaluation and decision-making can only base 
on predictions; no experienced toxicity value is given, usually, except those available 
from past tests. A supplement to providing prediction intervals that covers model 
uncertainty for decision making from another perspective can be the following ap-
proach: 

1. For N compounds create a list of pairs (yi , ˆ y i )  with yi  as the observed toxicity 
for a compound i and ˆ y i  as the predicted toxicity for a compound i. N preferably 
equals the total number of compounds available for a data set, i.e., learning and 
testing data. The estimated/predicted values ˆ y i  can be any values of the predic-
tion interval, minimum, maximum, mean, for example. 

2. Sort the matrix y ˆ y [ ] with respect to column ˆ y . 

3. Create q equidistant intervals (classes) based on ˆ y . 
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The result is q disjoint classes of corresponding observed and estimated toxicity 
values. For each class j, j=1, 2, .., q, the estimated toxicity mean and the minimum, 
maximum, and mean of the observed toxicities can be calculated. This means that 
here an interval of observed toxicity values for a given interval of predicted toxicities 
is obtained that describes the prediction’s uncertainty for a related class or interval. 
Using a new compound’s most likely prediction from the prediction interval, for ex-
ample, this value would decide in which prediction class the compound would fit into 
along with the class’ uncertainty given by the interval of past experienced toxicity 
values. Figure 8 plots the results of a derived decision model for q=12 classes from 
the predictions of the combined model reported in 3.3 and table 3 lists the underlying 
data of fig. 8 for reference. For comparison, the results based on the minimum (most 
toxic) predictions of the 13 individual models of section 3.2 are shown in fig. 9. Ta-
ble 4 shows the accuracy values for these two decision models compared to a mean-
based model. 

 
Fig. 8. Decision model based on the predictions of the combined model 

Table 3. Underlying data of the decision model of fig. 8 

Class Number of 
class mem-

bers 

From 
predicted 
toxicity 

To pre-
dicted 

toxicity 

Min. 
observed 
toxicity 

Mean ob-
served 
toxicity 

Max. ob-
served 
toxicity 

Mean 
predicted 
toxicity 

1 6 -6.90 -6.24 -7.74 -6.23 -5.62 -6.49 
2 3 -6.24 -5.59 -6.27 -6.03 -5.79 -5.88 
3 8 -5.59 -4.93 -6.84 -5.45 -3.98 -5.26 
4 7 -4.93 -4.27 -5.24 -4.50 -4.02 -4.57 
5 23 -4.27 -3.61 -5.58 -3.87 -2.13 -3.89 
6 35 -3.61 -2.95 -5.02 -3.37 -1.64 -3.31 
7 53 -2.95 -2.29 -4.40 -2.66 -0.47 -2.61 
8 69 -2.29 -1.63 -3.66 -1.83 0.36 -1.95 
9 44 -1.63 -0.97 -3.10 -1.46 0.12 -1.33 
10 21 -0.97 -0.31 -3.27 -0.60 0.30 -0.74 
11 8 -0.31 0.35 -1.09 -0.15 0.43 -0.10 
12 4 0.35 1.01 -0.10 0.32 1.33 0.66 
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Fig. 9. Decision model of 12 classes based on the minimum predictions of 13 individual models 

Table 4. Accuracy of three decision models for trout 

 Min. Tox. 
vs. 

Mean Pred. 

Mean Tox. 
vs. 

Mean Pred. 

Max. Tox. 
vs. 

Mean Pred. 
R2 decision model fig. 8 0.51 0.99 0.68 
R2 decision model fig. 9 0.75 0.79 0.0 
R2 decision model using the mean prediction of 
13 models (not displayed) 

0.4 0.97 0.5 
 

 
The result in table 4 confirms the expectation that the combined model shows a 

higher performance than just using the mean of a number of individual models. 

4   Conclusions 

The current results and conclusions are primarily based on the Demetra data set, but 
several other toxicity data sets have been investigated, also. 

1. Animal tests run to obtain the data source for toxicity QSAR modelling are de-
scribed by a complex, nonlinear dynamic ecotoxicological system. The mortality 
rate of a certain species as an observed output variable of this system, however, is 
not object of toxicity modelling. Instead, an input variable of the test system – the 
external disturbance LC50 (lethal concentration or dose) – is modelled by a pol-
lutant’s molecular structure. The system’s observed output variable, the mortality 
rate y, is mapped by a single pair of observations (LC50, y) and, therefore, is de-
scribed by a linear static model a priori. This, in fact, is a strong simplification of 
the ecotoxicological system. 
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2. Since different values are measured for LC50 that can vary up to a factor of 4 
when running multiple tests it is also not exactly clear, which of these values can 
be seen as the “true” value for modelling. This value as the models’ target vari-
able, however, has an important impact on model results both predictive and de-
scriptive, which finally means uncertain model results. 

3. The used input information for modelling does not reflect very appropriated the 
desired input-output relation of the complex ecotoxicological system and this re-
sults in highly noisy data. Observing additional characteristical state or external 
variables of the test system during the animal tests may significantly reduce the 
data’s noise and thus the models’ uncertainty. The modelling approach should be 
improved to better cover the system’s non-linear and dynamic behaviour. 

4. Applying GMDH for multileveled self-organisation and model combining turns 
out a very effective and valuable knowledge extraction technology for building 
reliable and interpretable models, objectively, in short time frames from noisy 
and high-dimensional data sets, directly. Also, the obtained models are easy to 
implement in other runtime environments for application and reuse. 

5. Decision-making has to take into account the models’ uncertainty. Prediction and 
toxicity intervals obtained by applying many alternative models are one efficient 
way to fit this goal inherently. 
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